jueves, 27 de noviembre de 2014

6.3.2 A lo ancho

El problema de los caminos más cortos es el problema que consiste en encontrar un camino entre dos vértices (o nodos) de tal manera que la suma de los pesos de las aristas que lo constituyen es mínima. Ahora bien, podemos emplear el algoritmo de Dijkstra para éstos casos, los pasos o procedimientos a seguir para éste algoritmo son los siguientes: Teniendo un grafo dirigido ponderado de N nodos no aislados, sea x el nodo inicial, un vector D de tamaño N guardará al final del algoritmo las distancias desde x al resto de los nodos.

1. Inicializar todas las distancias en D con un valor infinito relativo ya que son desconocidas al principio, exceptuando la de x que se debe colocar en 0 debido a que la distancia de x a x sería 0.
2. Sea a = x (tomamos a como nodo actual).
3. Recorremos todos los nodos adyacentes de a, excepto los nodos marcados, llamaremos a estos vi
4. Si la distancia desde x hasta va guardada en D es mayor que la distancia desde x hasta a, sumada a la distancia desde a hasta vi; esta se sustituye con la segunda nombrada.
5. Marcamos como completo el nodo a.

6. Tomamos como próximo nodo actual el de menor valor en D (puede hacerse almacenándolos valores en una cola de prioridad) y volvemos al paso 3 mientras existan nodos no marcados.

No hay comentarios:

Publicar un comentario